Разное

Фасеточные глаза это: Фасеточные глаза — это… Что такое Фасеточные глаза?

Фасеточные глаза — это… Что такое Фасеточные глаза?

Фасе́точные глаза́ — сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых других беспозвоночных; образованы особыми структурными единицами — омматидиями, роговичная линза которых имеет вид выпуклого шестигранника — фасетки (фр. facette — грань; отсюда название). Характерно цветовое зрение с восприятием ультрафиолетовых лучей и направления поляризации линейно-поляризованного света, при плохом различении мелких деталей, но хорошей способностью различать мелькания (мигания) света с частотой вплоть до 250—300 Гц (для человека предельная частота около 50 Гц).

Фасеточные глаза насекомых неподвижны, расположены по бокам головы и могут занимать почти всю её поверхность (у стрекоз, мух, пчёл). Фасеточные глаза расположены на капсуле головы в глубоких впячиваниях кутикулы, называемыми глазными капсулами. Кольцо из кутикулы, охватывающее глаз извне, удерживает его на головной капсуле. У ракообразных иногда сидят на подвижных выростах. Наиболее изучены фасеточные глаза взрослых насекомых и их личинок с неполным превращением, у которых они сложены сотнями и даже тысячами омматидиев.

Глаза различных видов насекомых состоят из различного числа омматидиев: у рабочего муравья — около 100, у комнатной мухи — около 4000, у рабочей пчелы — 5000, у бабочек — до 17 000, у стрекоз — до 30 000.

Типы фасеточных глаз

Схема строения апозиционного фасеточного глаза: 1 — роговичные фасетки; 2 — светопреломляющий аппарат; 3 — пигментные клетки; 4 — зрительные клетки; 5 — светочувствительный элемент омматидия; 6 — аксоны зрительных клеток, идущие в оптические ганглии; 7 — покровы головы; 8 — глазная капсула.

В зависимости от анатомических особенностей омматидиев и их оптических свойств различают 3 типа фасеточных глаз: апозиционные (фотопические), оптикосуперпозиционные и нейросуперпозиционные (называемые в совокупности скотопическими). У некоторых насекомых (богомолы, подёнки) одна часть глаза может быть построена по аппозиционному типу, а другая — по суперпозиционному.

В фасеточных глазах всех типов собственно светочувствительным элементом служат рабдомеры зрительных клеток, содержащие фотопигмент (обычно подобный родопсину). Поглощение фотопигментом квантов света — первое звено в цепи процессов, в результате которых зрительная клетка генерирует нервный сигнал.

Апозиционные (фотопические) фасеточные глаза

В апозиционных фасеточных глазах, свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия.

Оптикосуперпозиционные фасеточные глаза

В оптикосуперпозиционных фасеточных глазах, характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей, прошедших не сквозь одну, а сквозь несколько фасеток. Таким образом, при слабом освещении увеличивается чувствительность глаза.

Нейросуперпозиционные фасеточные глаза

Для нейросуперпозиционных фасеточных глаз характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства.

Разрешающая способность и цветовое восприятие

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Нервная проекция сетчатки на оптические ганглии мозга и, отчасти, особенности оптики фасеточных глаз таковы, что они обеспечивают анализ внешнего мира с точностью до растра омматидиев, а не отдельных зрительных клеток. Низкая угловая плотность омматидиев (их оптические оси расходятся под углами 1—6°) препятствует различению мелких деталей, однако малая инерционность в сочетании с высокой контрастной чувствительностью (1—5 %) фасеточных глаз позволяет некоторым насекомым различать мелькания (мигания) света с частотой вплоть до 250—300 Гц (для человека предельная частота около 50 Гц). Фасеточные глаза обеспечивают многим беспозвоночным цветовое зрение с восприятием ультрафиолетовых лучей, а также анализ направления плоскости линейно-поляризованного света.

Источники

Глаза фасеточные: чем отличаются от простых?

В процессе эволюции зрения у некоторых животных возникают довольно сложные оптические приборы. К таким, безусловно, можно отнести глаза фасеточные. Они сформировались у насекомых и ракообразных, некоторых членистоногих и беспозвоночных. Чем отличается фасеточный глаз от простого, каковы его основные функции? Об этом поговорим в нашем сегодняшнем материале.

глаза фасеточные

Глаза фасеточные

Это оптическая система, растровая, где отсутствует единая сетчатка. А все рецепторы объединены в небольшие ретинулы (группы), образуя выпуклый слой, не содержащий более никаких нервных окончаний. Таким образом, глаз состоит из множества отдельных единиц – омматидий, объединяющихся в общую систему зрения.

Глаза фасеточные, присущие, к примеру, насекомым, отличаются от бинокулярных (присущих в том числе и человеку) плохим определением мелких деталей. Зато они способны различать колебания света (до 300 Гц), тогда как для человека предельные возможности – 50 Гц. А еще мембрана такого типа глаз имеет трубчатую структуру. Ввиду этого глаза фасеточные не имеют таких особенностей рефракции, как дальнозоркость или близорукость, для них неприменимо понятие аккомодации.

чем отличается фасеточный глаз от простого

Некоторые особенности строения и зрения

У многих насекомых органы зрения занимают большую часть головы и фактически неподвижны. К примеру, глаза фасеточные у стрекозы состоят из 30 000 частиц, образуя сложную структуру. У бабочек – 17 000 омматидиев, у мухи – 4 тысячи, у пчелы – 5. Наименьшее количество частичек у муравья рабочего – 100 штук.

Бинокулярное или фасеточное?

Первый тип зрения позволяет воспринимать объем предметов, их мелкие детали, оценивать расстояния до объектов и их расположение по отношению друг к другу. Однако бинокулярное зрение человека ограничивается углом в 45 градусов. Если обзор необходим более полный, глазное яблоко осуществляет движение на рефлекторном уровне (либо мы повернем голову вокруг оси). Фасеточные глаза в виде полусфер с омматидиями позволяют видеть окружающую действительность со всех сторон, не поворачивая органов зрения или головы. Причем изображение, которое передает при этом глаз, очень похоже на мозаику: одной структурной единицей глаза воспринимается отдельный элемент, а вместе они отвечают за воссоздание полной картины.

сложные фасеточные глаза имеют

Разновидности

Омматидии имеют анатомические особенности, в результате чего и различаются их оптические свойства (к примеру, у разных насекомых). Ученые определяют три вида фасета:

  1. Аппозиционные. Такие сложные фасеточные глаза есть у дневных насекомых. Пигмент, не имеющий прозрачных свойств, разделяет фасеты – частички, что находятся рядом. И глазные рецепторы могут воспринимать только свет, совпадающий с осью определенного омматидия.
  2. Оптикосуперпозиционные. Такие сложные фасеточные глаза имеют некоторые ракообразные, а также ночные и сумеречные насекомые. Пигмент, содержащийся в глазу, попеременно изолирует омматидии, перемещаясь, что повышает чувствительность органов зрения при небольшом освещении.
  3. Нейросуперпозиционные. Различные омматидии суммируют сигнал, поступающий из одной точки в пространстве.сложные фасеточные глаза есть у

Кстати, некоторые виды насекомых имеют смешанный тип фасеточных органов зрения, а у многих, кроме рассматриваемых нами, имеются еще и простые глаза. Так, у мухи, к примеру, по бокам головы расположены парные фасеточные органы довольно больших размеров. А на темени есть три простых глаза, выполняющих вспомогательные функции. Такая же организация органов зрения и у пчелы – то есть всего пять глаз!

У некоторых ракообразных фасеточные глаза как бы сидят на подвижных выростах-стебельках.

А у некоторых амфибий и рыб имеется еще и дополнительный (теменной) глаз, который различает свет, но обладает предметным зрением. Сетчатка его состоит только из клеток и рецепторов.

Современные научные разработки

В последнее время глаза фасеточные – предмет изучения и восторга ученых. Ведь такие органы зрения, ввиду своего оригинального строения, дают почву для научных изобретений и изысканий в мире современной оптики. Основные преимущества – широкий обзор пространства, разработка искусственных фасеток, используемых преимущественно в миниатюрных, компактных, секретных системах наблюдения.

Фасеточные глаза — это… Что такое Фасеточные глаза?

        сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образованы особыми структурными единицами – омматидиями (См. Омматидий), роговичная линза которых имеет вид выпуклого шестигранника – фасетки (франц. facette – грань; отсюда название). Ф. г. насекомых неподвижны, расположены по бокам головы и могут занимать почти всю сё поверхность (у стрекоз, мух, пчёл). У ракообразных иногда сидят на подвижных выростах. Наиболее изучены Ф. г. взрослых насекомых и их личинок с неполным превращением, у которых они сложены сотнями и даже тысячами омматидиев. В зависимости от анатомических особенностей омматидиев и их оптических свойств различают 3 типа Ф. г. В аппозиционных Ф. г., свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия (
рис. 1
). В оптикосуперпозиционных Ф. г., характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей, прошедших не сквозь одну, а сквозь несколько фасеток. Т. о., при слабом освещении увеличивается чувствительность глаза. Для нейросуперпозиционных ф. г. характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства. У некоторых насекомых (богомолы, подёнки) одна часть глаза может быть построена по аппозиционному типу, а другая – по суперпозиционному (
рис. 2
).          В Ф. г. всех типов собственно светочувствительным элементом служат рабдомеры зрительных клеток, содержащие фотопигмент (обычно подобный Родопсину). Поглощение фотопигментом квантов света – первое звено в цепи процессов, в результате которых зрительная клетка генерирует нервный сигнал.          Нервная проекция сетчатки (См. Сетчатка) на оптические ганглии мозга и, отчасти, особенности оптики Ф. г. таковы, что они обеспечивают анализ внешнего мира с точностью до растра омматидиев, а не отдельных зрительных клеток. Низкая угловая плотность омматидиев (их оптические оси расходятся под углами 1–6°) препятствует различению мелких деталей, однако малая инерционность в сочетании с высокой контрастной чувствительностью (1–5%) Ф. г. позволяет некоторым насекомым различать мелькания (мигания) света с частотой вплоть до 250–300
гц
(для человека предельная частота около 50 гц). Ф. г. обеспечивают многим беспозвоночным Цветовое зрение с восприятием ультрафиолетовых лучей, а также анализ направления плоскости линейно-поляризованного света.

         Лит.: Мазохин-Поршняков Г. А., Зрение насекомых, М., 1965; Проссер Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967, гл.12.

         Г. А. Мазохин-Поршняков.

        Рис. 1. Схема строения аппозиционного фасеточного глаза: 1 — роговичные фасетки; 2 — светопреломляющий аппарат; 3 — пигментные клетки; 4 — зрительные клетки; 5 — светочувствительный элемент омматидия; 6 — аксоны зрительных клеток, идущие в оптические ганглии; 7 — покровы головы; 8 — глазная капсула.

        Рис. 1. Схема строения аппозиционного фасеточного глаза: 1 — роговичные фасетки; 2 — светопреломляющий аппарат; 3 — пигментные клетки; 4 — зрительные клетки; 5 — светочувствительный элемент омматидия; 6 — аксоны зрительных клеток, идущие в оптические ганглии; 7 — покровы головы; 8 — глазная капсула.

        Рис. 2. Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

        Рис. 2. Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Фасеточные глаза — Википедия с видео // WIKI 2

Фасеточные глаза стрекозы

Фасе́точные глаза́ (фр. facette—«грань») — основной парный орган зрения насекомых, ракообразных и некоторых других членистоногих. Характерно цветовое зрение с восприятием ультрафиолетовых лучей и направления поляризации линейно-поляризованного света, при плохом различении мелких деталей, но хорошей способностью различать мелькания (мигания) света с частотой вплоть до 250—300 Гц (для человека предельная частота около 100-120 Гц).

Фасеточные глаза насекомых неподвижны, расположены по бокам головы и могут занимать почти всю её поверхность. Фасеточные глаза расположены на капсуле головы в глубоких впячиваниях кутикул, называемых глазными капсулами. Кольцо из кутикулы, охватывающее глаз извне, удерживает его на головной капсуле. У ракообразных они иногда сидят на подвижных выростах, именуемых стебельками. Наиболее изучены фасеточные глаза взрослых насекомых и их личинок с неполным превращением, у которых они сложены сотнями и даже тысячами фасеток.

Энциклопедичный YouTube

  • 1/3

    Просмотров:

    15 675

    4 036

    13 771

  • ✪ Невероятное вокруг нас. Супер-глаза.

  • ✪ Сколько глаз у мухи

  • ✪ Архитектура перенаселённых жилищ. Формы природы.

Содержание

Строение

Фасеточные глаза состоят из особых структурных единиц — омматидиев, имеющих вид узких, сильно вытянутых конусов, сходящихся своими вершинами в глубине глаза, а своими основаниями образующих его сетчатую поверхность.

Каждый омматидий имеет очень ограниченный угол зрения и «видит» только тот крошечный участок находящегося перед глазами предмета, на который направлено продолжение оси данного омматидия; но так как омматидии тесно прилегают друг к другу, а при этом их оси расходятся лучеобразно, то сложный глаз охватывает предмет в целом, причем изображение предмета получается мозаичным (то есть составленным из множества отдельных кусочков) и прямым (а не перевёрнутым, как в глазу человека).

Типы фасеточных глаз

Схема строения фасеточного глаза насекомого

Схема строения фасеточного глаза насекомого

В зависимости от анатомических особенностей омматидиев и их оптических свойств различают 3 типа фасеточных глаз: аппозиционные (фотопические), оптикосуперпозиционные и нейросуперпозиционные (называемые в совокупности скотопическими). У некоторых насекомых (богомолы, подёнки) одна часть глаза может быть построена по аппозиционному типу, а другая — по суперпозиционному.

В фасеточных глазах всех типов собственно светочувствительным элементом служат рабдомеры зрительных клеток, содержащие фотопигмент (обычно подобный родопсину). Поглощение фотопигментом квантов света — первое звено в цепи процессов, в результате которых зрительная клетка генерирует нервный сигнал.

Аппозиционные (фотопические) фасеточные глаза

В аппозиционных фасеточных глазах, свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия.

Оптикосуперпозиционные фасеточные глаза

В оптикосуперпозиционных фасеточных глазах, характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей, прошедших не сквозь одну, а сквозь несколько фасеток. Таким образом, при слабом освещении увеличивается чувствительность глаза.

Нейросуперпозиционные фасеточные глаза

Для нейросуперпозиционных фасеточных глаз характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства.

Разрешающая способность и цветовое восприятие

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Нервная проекция сетчатки на оптические ганглии мозга и, отчасти, особенности оптики фасеточных глаз таковы, что они обеспечивают анализ внешнего мира с точностью до растра омматидиев, а не отдельных зрительных клеток. Низкая угловая плотность омматидиев (их оптические оси расходятся под углами 1—6°) препятствует различению мелких деталей, однако малая инерционность в сочетании с высокой контрастной чувствительностью (1—5 %) фасеточных глаз позволяет некоторым насекомым различать мелькания (мигания) света с частотой вплоть до 250—300 Гц (для человека предельная частота около 50 Гц). Фасеточные глаза обеспечивают многим беспозвоночным цветовое зрение с восприятием ультрафиолетовых лучей, а также анализ направления плоскости линейно-поляризованного света.

Источники

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками). Эта страница в последний раз была отредактирована 30 июля 2020 в 00:11.

Фасеточный глаз — это… Что такое Фасеточный глаз?

Фасе́точные глаза́ — сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых других беспозвоночных; образованы особыми структурными единицами — омматидиями, роговичная линза которых имеет вид выпуклого шестигранника — фасетки (фр. facette — грань; отсюда название).

Фасеточные глаза насекомых неподвижны, расположены по бокам головы и могут занимать почти всю её поверхность (у стрекоз, мух, пчёл). Фасеточные глаза расположены на капсуле головы в глубоких впячиваниях кутикулы, называемыми глазными капсулами. Кольцо из кутикулы, охватывающее глаз извне, удерживает его на головной капсуле. У ракообразных иногда сидят на подвижных выростах. Наиболее изучены фасеточные глаза взрослых насекомых и их личинок с неполным превращением, у которых они сложены сотнями и даже тысячами омматидиев.

Глаза различных видов насекомых состоят из различного числа омматидиев: у рабочего муравья — около 100, у комнатной мухи — около 4000, у рабочей пчелы — 5000, у бабочек — до 17 000, у стрекоз — до 30 000.

Типы фасеточных глаз

Схема строения апозиционного фасеточного глаза: 1 — роговичные фасетки; 2 — светопреломляющий аппарат; 3 — пигментные клетки; 4 — зрительные клетки; 5 — светочувствительный элемент омматидия; 6 — аксоны зрительных клеток, идущие в оптические ганглии; 7 — покровы головы; 8 — глазная капсула.

В зависимости от анатомических особенностей омматидиев и их оптических свойств различают 3 типа фасеточных глаз: апозиционные (фотопические), оптикосуперпозиционные и нейросуперпозиционные (называемые в совокупности скотопическими). У некоторых насекомых (богомолы, подёнки) одна часть глаза может быть построена по аппозиционному типу, а другая — по суперпозиционному.

В фасеточных всех типов собственно светочувствительным элементом служат рабдомеры зрительных клеток, содержащие фотопигмент (обычно подобный родопсину). Поглощение фотопигментом квантов света — первое звено в цепи процессов, в результате которых зрительная клетка генерирует нервный сигнал.

Апозиционные (фотопические) фасеточные глаза

В апозиционных фасеточных глазах, свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия.

Оптикосуперпозиционные фасеточные глаза

В оптикосуперпозиционных фасеточных глазах, характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей, прошедших не сквозь одну, а сквозь несколько фасеток. Таким образом, при слабом освещении увеличивается чувствительность глаза.

Нейросуперпозиционные фасеточные глаза

Для нейросуперпозиционных фасеточных глаз характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства.

Разрешающая способность и цветовое восприятие

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 — аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Нервная проекция сетчатки на оптические ганглии мозга и, отчасти, особенности оптики фасеточных глаз таковы, что они обеспечивают анализ внешнего мира с точностью до растра омматидиев, а не отдельных зрительных клеток. Низкая угловая плотность омматидиев (их оптические оси расходятся под углами 1—6°) препятствует различению мелких деталей, однако малая инерционность в сочетании с высокой контрастной чувствительностью (1—5 %) фасеточных глаз позволяет некоторым насекомым различать мелькания (мигания) света с частотой вплоть до 250—300 Гц (для человека предельная частота около 50 Гц). Фасеточные глаза обеспечивают многим беспозвоночным цветовое зрение с восприятием ультрафиолетовых лучей, а также анализ направления плоскости линейно-поляризованного света.

Источники

Wikimedia Foundation. 2010.

ФАСЕТОЧНЫЕ ГЛАЗА — это… Что такое ФАСЕТОЧНЫЕ ГЛАЗА?


ФАСЕТОЧНЫЕ ГЛАЗА
ФАСЕТОЧНЫЕ ГЛАЗА сложные глаза (oculi), основной парный орган зрения ракообразных, насекомых и нек-рых других беспозвоночных, образованный омматидиями, роговичная линза к-рых имеет вид выпуклого 6-гранника — фасетки (франц. facette — грань, отсюда назв.). Ф. г. насекомых неподвижно расположены по бокам головы, иногда (у стрекоз, мух и др.) занимая почти всю её поверхность, у нек-рых ракообразных — на подвижных стеблевидных выростах. Наиб, изучены Ф. г. насекомых, у к-рых они сложены большим числом (до 30 тыс.) омматидиев. Различают 3 морфофункц. типа Ф. г. В аппозиционных Ф. г. (свойственны обычно дневным насекомым) смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом, локализованным в спец. пигментных клетках. В оптикосуперпозиционных Ф. г. изоляция омматидиев переменная, и при недостатке света происходит наложение (суперпозиция) лучей, прошедших сквозь разные фасетки. В таких Ф. г. с «прозрачной зоной», свойственных ночным насекомым и ракообразным, тела зрительных клеток и утолщённый рабдом сдвинуты проксимально. Для нейросуперпозиционных Ф. г. мух характерна суммация нервных сигналов от неск. зрительных клеток, получающих свет из одной и той же точки пространства. Нервная проекция сетчатки на оптич. ганглии мозга и свойства оптики таковы, что Ф. г. обеспечивают анализ внеш. мира с точностью до растра омматидиев, а не отд. зрительных клеток, как у позвоночных. Низкая угловая плотность омматидиев (их оптич. оси расходятся под углом от 1 до 6—8° и больше) препятствует различению мелких деталей, но малая инерционность в сочетании с высокой контрастной чувствительностью сетчатки позволяет нек-рым насекомым воспринимать мелькания с частотой до 250— 300 Гц. Ф. г. обеспечивают мн. беспозвоночным цветовое зрение с восприятием УФ-лучей и анализ направления плоскости линейно поляризованного света, благодаря чему они могут ориентироваться по картине поляризации безоблачного неба. (см. ОММАТИДИИ). Схема возникновения сетчаточного изображения в аппозиционных (а), оптикосуперпозициониых (6) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии со слитым (а, б) или открытым (в) рабдомом; 2 — аксоны зрительных клеток; 3 — рабдом слитый; 4 — рабдом открытый. Заштрихованы те рабдомы, на к-рые попадают параллельно идущие лучи света (показаны стрелками.).

Схема возникновения сетчаточного изображения в аппозиционных (а), оптикосуперпозициониых (6) и нейросуперпозиционных (в) фасеточных глазах: 1 — отдельные омматидии со слитым (а, б) или открытым (в) рабдомом; 2 — аксоны зрительных клеток; 3 — рабдом слитый; 4 — рабдом открытый. Заштрихованы те рабдомы, на к-рые попадают параллельно идущие лучи света (показаны стрелками.).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)

фасе́точные глаза́

(сложные глаза), основной парный орган зрения ракообразных, членистоногих и некоторых других беспозвоночных, состоящий из одинаковых простых «глазков» – омматидиев, расположенных в геометрическом порядке. Фасеточные глаза всегда выпуклые. Каждый омматидий даёт прямое изображение части расположенного непосредственно перед ним предмета, а общий его вид складывается, как мозаика, из отдельных частей с участием всех омматидиев.
Омматидии членистоногих – мельчайшие светочувствительные органы, состоящие из линзы роговицы, кристаллического конуса, зрительных рецепторных клеток, расположенных, как дольки, в апельсине, и примыкающих к ним пигментных клеток. У различных животных может быть разное количество омматидиев (от нескольких штук до нескольких десятков тыс.). Так, у дафнии 22 омматидия, а у стрекозы ок. 30 тыс.
Различают 3 типа фасеточных глаз: аппозиционные, оптико-суперпозиционные и нейросуперпозиционные. В аппозиционных глазах смежные омматидии изолированы друг от друга пигментными клетками. Такие глаза присущи в основном дневным животным, напр. пчёлам, крабам, ракам-богомолам. Оптико-суперпозиционные глаза в условиях сильной освещённости могут функционировать как аппозиционные, но при слабом освещении форма пигментных клеток изменяется, образуется т.н. «прозрачная зона», благодаря чему лучи света из разных омматидиев собираются на один. Подобные глаза присущи ночным ракообразным (креветкам, омарам) и бабочкам. Вершиной эволюции зрения являются нейросуперпозиционные глаза, напр. у мух, в которых разрешающая сила может быть в 100 раз выше, чем в глазах другого типа. Лучи света одного источника падают на зрительные клетки смежных омматидиев, аксоны которых сходятся на одном патроне оптического ганглия. В каждом омматидии 8 зрительных клеток, воспринимающих лучи различных источников света.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

  • ФАРНЕЗОЛ
  • ФАСОЛЬ

Смотреть что такое «ФАСЕТОЧНЫЕ ГЛАЗА» в других словарях:

  • ФАСЕТОЧНЫЕ ГЛАЗА — сложные глаза у некоторых насекомых. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФАСЕТОЧНЫЕ ГЛАЗА сложные глаза, встречаются у большинства насекомых и состоят из значит. числа простых глазков: у муравьев от 50… …   Словарь иностранных слов русского языка

  • ФАСЕТОЧНЫЕ ГЛАЗА — (от франц. facette грань) (сложные глаза) парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образован многочисленными отдельными глазками омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле… …   Большой Энциклопедический словарь

  • Фасеточные глаза — Фасеточный глаз стрекозы Фасеточные глаза  сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых других беспозвоноч …   Википедия

  • фасеточные глаза — (от франц. facette  грань), сложные глаза, парный орган зрения насекомых, ракообразных и некоторых других беспозвоночных; образован многочисленными отдельными глазами  омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле …   Энциклопедический словарь

  • Фасеточные глаза —         сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образованы особыми структурными единицами – омматидиями (См. Омматидий), роговичная линза которых имеет вид выпуклого шестигранника –… …   Большая советская энциклопедия

  • ФАСЕТОЧНЫЕ ГЛАЗА — (от франц. facette грань) (сложные глаза), парный орган зрения насекомых, ракообразных и нек рых др. беспозвоночных; образован многочисл. отдельными глазами омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле зрения.… …   Естествознание. Энциклопедический словарь

  • Фасеточные глаза — или сложные глаза членистоногих (см. Глаз) получили это название потому, что хитин покровов образует над каждым глазком утолщение, или фасетку (Cornea Linse). Вся совокупность многогранных фасеток представляет поле, напоминающее торцовую мостовую …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • сложные глаза — то же, что фасеточные глаза. * * * СЛОЖНЫЕ ГЛАЗА СЛОЖНЫЕ ГЛАЗА, то же, что фасеточные глаза (см. ФАСЕТОЧНЫЕ ГЛАЗА) …   Энциклопедический словарь

  • СЛОЖНЫЕ ГЛАЗА — то же, что фасеточные глаза …   Большой Энциклопедический словарь

  • сложные глаза — то же, что фасеточные глаза. .(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.) …   Биологический энциклопедический словарь

С точки зрения насекомого

# : 22 Июл 2013 , «Но чтоб сие здание [Академия] непременно и полезно было, то имеет оное само себя править» , том 50, №2

Считается, что до 90% знаний о внешнем мире человек получает при помощи своего стереоскопического зрения. Зайцы обзавелись боковым зрением, благодаря которому они могут видеть объекты, находящиеся сбоку и даже позади себя. У глубоководных рыб глаза могут занимать до половины головы, а теменной «третий глаз» миноги позволяет ей неплохо ориентироваться в воде. Змеи способны видеть только движущийся объект, а самыми зоркими в мире признаны глаза сокола-сапсана, способного выследить добычу с высоты 8 км!

Но как видят мир представители самого многочисленного и разнообразного класса живых существ на Земле – насекомых? Наряду с позвоночными животными, которым они проигрывают только по размерам тела, именно насекомые обладают наиболее совершенным зрением и сложноустроенными оптическими системами глаза. Хотя фасеточные глаза насекомых не обладают аккомодацией, вследствие чего их можно назвать близорукими, однако они, в отличие от человека, способны различать чрезвычайно быстро двигающиеся объекты. А благодаря упорядоченной структуре своих фоторецепторов многие из них обладают настоящим «шестым чувством» – поляризационным зрением

Меркнет зрение – сила моя,
Два незримых алмазных копья…
А. Тарковский (1983)

Трудно переоценить значение света (электромагнитного излучения видимого спектра) для всех обитателей нашей планеты. Солнечный свет служит основным источником энергии для фотосинтезирующих растений и бактерий, а опосредованно через них – и для всех живых организмов земной биосферы. Свет непосредственно влияет на протекание всего многообразия жизненных процессов животных, от размножения до сезонной смены окраски. И, конечно, благодаря восприятию света специальными органами чувств, животные получают значительную (а часто и большую) часть сведений об окружающем мире, могут различать форму и цвет объектов, определять движение тел, ориентироваться в пространстве и т. п.

#

Зрение особенно важно для животных, способных активно передвигаться в пространстве: именно с возникновением подвижных животных начал формироваться и совершенствоваться зрительный аппарат – сложнейший из всех известных сенсорных систем. К таким животным относятся позвоночные и среди беспозвоночных – головоногие моллюски и насекомые. Именно эти группы организмов могут похвалиться самыми сложноустроенными органами зрения.

Однако зрительный аппарат у этих групп значительно различается, как и восприятие образов. Считается, что насекомые в целом более примитивны по сравнению с позвоночными, не говоря уже о высшем их звене – млекопитающих, и, естественно, человеке. Но вот насколько различается их зрительное восприятие? Иными словами, намного ли отличается от нашего мир, увиденный глазами маленького создания по имени муха?

Мозаика из шестигранников

Сложный фасеточный глаз бабочки большой вощиной огневки (Galleria mellonella) Зрительная система насекомых в принципе не отличается от таковой у других животных и состоит из периферических органов зрения, нервных структур и образований центральной нервной системы. Но что касается морфологии органов зрения, то здесь различия просто бросаются в глаза.

Всем знакомы сложные фасеточные глаза насекомых, которые встречаются у взрослых насекомых или у личинок насекомых, развивающихся с неполным превращением, т. е. без стадии куколки. Исключений из этого правила не так много: это блохи (отряд Siphonaptera), веерокрылые (отряд Strepsiptera), большинство чешуйниц (семейство Lepismatidae) и весь класс скрыточелюстных (Entognatha).

Фасеточный глаз по виду напоминает корзинку спелого подсолнуха: он состоит из набора фасеток (омматидиев) – автономных приемников светового излучения, имеющих все необходимое для регуляции светового потока и формирования изображения. Число фасеток сильно варьирует: от нескольких у щетинохвосток (отряд Thysanura) до 30 тыс. у стрекоз (отряд Aeshna). Удивительно, но число омматидиев может варьироваться даже внутри одной систематической группы: например, ряд видов жуков-жужелиц, обитающих на открытых пространствах, имеют хорошо развитые фасеточные глаза с большим количеством омматидиев, в то время как у жужелиц, обитающих под камнями, глаза сильно редуцированы и состоят из небольшого числа омматидиев.

Сложный фасеточный глаз насекомого состоит из отдельных единиц – фасеток (омматидий). Каждый омматидий является многоклеточным образованием, включающим в себя диоптрические структуры (роговицу и кристаллический конус), фоторецепторы – ретинальные клетки с фоточувствительным пигментом родопсином, а также экранирующие клетки со светопоглощающими пигментами. Родопсин находится в мембране множества микроскопических трубочек-ворсинок, составляющих рабдомер. Рис. Н. Крюковой (ИСиЭЖ СО РАН, Новосибирск) Верхний слой омматидиев представлен роговицей (хрусталиком) – участком прозрачной кутикулы, секретируемой специальными клетками, которая представляет собой своеобразную шестигранную двояковыпуклую линзу. Под роговицей у большинства насекомых располагается прозрачный кристаллический конус, структура которого может различаться у разных видов. У некоторых видов, особенно ведущих ночной образ жизни, в светопреломляющем аппарате имеются дополнительные структуры, играющие главным образом роль антибликового покрытия и увеличивающие светопропускание глаза.

Изображение, сформированное хрусталиком и кристаллическим конусом, попадает на светочувствительные ретинальные (зрительные) клетки, представляющие собой нейрон с коротким хвостиком-аксоном. Несколько ретинальных клеток образуют единый цилиндрический пучок – ретинулу. Внутри каждой такой клетки на стороне, обращенной внутрь омматидия, расположен рабдомер – особое образование из множества (до 75—100 тыс.) микроскопических трубочек-ворсинок, в мембране которых содержится зрительный пигмент. Как и у всех позвоночных, этим пигментом является родопсин – сложный окрашенный белок. Благодаря огромной площади этих мембран фоторецепторный нейрон содержит большое количество молекул родопсина (например, у плодовой мушки Drosophila это число превышает 100 млн!).

Глаза насекомых, ведущих сумеречный или ночной образ жизни, отличаются особыми скотопическими омматидиями. В их экранирующих клетках пигменты могут мигрировать: при достаточном количестве света они распределяются равномерно (а), а при недостатке – скапливаются в верхней части клеток (б). В результате в темное время световое излучение с одного омматидия может попадать на рецепторные клетки соседних омматидиев. Рис. Н. Крюковой Рабдомеры всех зрительных клеток, объединенные в рабдом, и являются светочувствительными, рецепторными элементами фасеточного глаза, а все ретинулы в совокупности составляют аналог нашей сетчатки.

Светопреломляющий и светочувствительный аппарат фасетки по периметру окружают клетки с пигментами, которые играют роль световой изоляции: благодаря им световой поток, преломляясь, попадает на нейроны только одного омматидия. Но так устроены фасетки в так называемых фотопических глазах, приспособленных к яркому дневному свету.

Для видов, ведущих сумеречный или ночной образ жизни, характерны глаза другого типа – скотопические. Такие глаза имеют ряд приспособлений к недостаточному световому потоку, например, очень большие рабдомеры. Кроме того, в омматидиях таких глаз светоизолирующие пигменты могут свободно мигрировать внутри клеток, благодаря чему световой поток может попадать на зрительные клетки соседних омматидиев. Этот феномен лежит в основе и так называемой темновой адаптации глаз насекомых – увеличении чувствительности глаза при недостаточном освещении.

У многих насекомых, живущих в условиях низкой освещенности, глаза значительно упрощаются. Например, у жука-жужелицы вида Amerizus teles (а), живущего под камнями, глаза состоят из нескольких десятков фасеток, расположенных почти в одной плоскости. А жужелицы вида Perileptus japonicus (б), ведущие совершенно иной образ жизни, обладают выпуклыми фасеточными глазами с большим числом фасеток. Сканирующая электронная  микроскопия. Фото Р. Дудко

При поглощении рабдомерами фотонов света в ретинальных клетках генерируются нервные импульсы, которые по аксонам направляются в парные зрительные доли головного мозга насекомых. В каждой зрительной доле имеется по три ассоциативных центра, где и осуществляется переработка потока зрительной информации, одновременно идущей от множества фасеток.

От одного до тридцати

Согласно древним легендам, у людей некогда имелся «третий глаз», отвечающий за сверхчувственное восприятие. Доказательств этому нет, однако та же минога и другие животные, такие как ящерица-гаттерия и некоторые земноводные, имеют необычные светочувствительные органы в «неположенном» месте. И в этом смысле насекомые не отстают от позвоночных: помимо обычных фасеточных глаз у них встречаются небольшие дополнительные глазки – оцелли, расположенные на лобно-теменной поверхности, и стеммы – по бокам головы.

У этой мухи из рода Helophilus помимо больших фасеточных глаз имеется три дополнительных простых глазка (оцелли)

Оцелли имеются в основном у хорошо летающих насекомых: взрослых особей (у видов с полным превращением) и личинок (у видов с неполным превращением). Как правило, это три глазка, расположенные в виде треугольника, но иногда срединный либо два боковых могут отсутствовать. По строению оцелли сходны с омматидиями: под светопреломляющей линзой у них находится слой прозрачных клеток (аналог кристаллического конуса) и сетчатка-ретинула.

Клоп рода Carpocoris с двумя дополнительными глазками-оцеллиями; внизу – гусеница коконопряда, рода Malacosoma с группой дополнительных глазков-стемм Стеммы можно обнаружить у личинок насекомых, развивающихся с полным превращением. Их число и расположение варьирует в зависимости от вида: с каждой стороны головы может располагаться от одного до тридцати глазков. У гусениц чаще встречается шесть глазков, расположенных так, что каждый из них имеет обособленное поле зрения.

В разных отрядах насекомых стеммы могут отличаться друг от друга по строению. Эти различия связаны, возможно, с их происхождением от разных морфологических структур. Так, число нейронов в одном глазке может составлять от нескольких единиц до нескольких тысяч. Естественно, это сказывается на восприятии насекомыми окружающего мира: если некоторые из них могут видеть лишь перемещение светлых и темных пятен, то другие способны распознавать размеры, форму и цвет предметов.

Как мы видим, и стеммы, и омматидии представляют собой аналоги одиночных фасеток, пусть и видоизмененные. Однако у насекомых имеются и другие «запасные» варианты. Так, некоторые личинки (особенно из отряда двукрылых) способны распознать свет даже при полностью затененных глазках с помощью фоточувствительных клеток, расположенных на поверхности тела. А некоторые виды бабочек имеют так называемые генитальные фоторецепторы.

Наряду со сложными фасеточными глазами у насекомых встречаются и простоустроенные дополнительные глазки, аналоги одиночных фасеток

Все такие фоторецепторные зоны устроены схожим образом и представляют собой скопление из нескольких нейронов под прозрачной (или полупрозрачной) кутикулой. За счет подобных дополнительных «глаз» личинки двукрылых избегают открытых пространств, а самки бабочек используют их при откладке яиц в затененных местах.

Фасеточный поляроид

На что способны сложноустроенные глаза насекомых? Как известно, у любого оптического излучения можно выделить три характеристики: яркость, спектр (длину волны) и поляризацию (ориентированность колебаний электромагнитной составляющей).

В фасеточных глазах чешуекрылых все фасетки обычно могут воспринимать как обычный, так и поляризованный свет. На фото – бабочка-нимфалида, шашечница, из рода Melitaea Спектральную характеристику света насекомые используют для регистрации и распознавания объектов окружающего мира. Практически все они способны воспринимать свет в диапазоне от 300—700 нм, в том числе и недоступную для позвоночных ультрафиолетовую часть спектра.

Как правило, разные цвета воспринимаются различными областями сложного глаза насекомых. Такая «локальная» чувствительность может различаться даже в пределах одного вида в зависимости от половой принадлежности особи. Нередко в одном и том же омматидии могут находиться различные цветовые рецепторы. Так, у бабочек рода Papilio два фоторецептора имеют зрительный пигмент с максимумом поглощения 360, 400 или 460 нм, еще два – 520 нм, а остальные – от 520 до 600 нм (Kelber et al., 2001).

Но это далеко не все, что умеет глаз насекомого. Как упоминалось выше, в зрительных нейронах фоторецепторная мембрана микроворсинок рабдомера свернута в трубку круглого или гексагонального сечения. За счет этого часть молекул родопсина не участвуют в поглощении света из-за того, что дипольные моменты этих молекул располагаются параллельно ходу светового луча (Говардовский, Грибакин, 1975). В результате микроворсинка приобретает дихроизм – способность к различному поглощению света в зависимости от его поляризации. Повышению поляризационной чувствительности омматидия способствует и то, что молекулы зрительного пигмента не располагаются в мембране хаотично, как у человека, а ориентированы в одном направлении, да к тому же жестко закреплены.

У насекомых, в отличие от позвоночных животных, молекула светочувствительного пигмента родопсина при попадании на нее фотона света не распадается, а переходит в метародопсин. За счет этого происходит активация всей сложной цепи фототрансдукции – процесса преобразования светового сигнала в электрические импульсы в фоторецепторных нейронах, лежащего в основе формирования зрительных образов. В итоге метародопсин под действием фотона восстанавливается в родопсин, т.е. для завершения полного цикла трансдукции необходимо поглощение двух фотонов света Если глаз способен различить два источника света на основе их спектральных характеристик вне зависимости от интенсивности излучения, можно говорить о цветовом зрении. Но если он делает это, фиксируя поляризационный угол, как в данном случае, мы имеем все основания говорить о поляризационном зрении насекомых.

Как же воспринимают насекомые поляризованный свет? Исходя из структуры омматидия, можно предположить, что все фоторецепторы должны быть одновременно чувствительными как к определенной длине (длинам) световых волн, так и к степени поляризации света. Но в таком случае могут возникнуть серьезные проблемы – так называемое ложное восприятие цвета. Так, свет, отраженный с глянцевой поверхности листьев или водной глади, частично поляризуется. В этом случае мозг, анализируя данные фоторецепторов, может ошибиться в оценке интенсивности окраски либо формы отражающей поверхности.

Насекомые научились успешно справляться с подобными трудностями. Так, у ряда насекомых (в первую очередь мух и пчел) в омматидиях, воспринимающих только цвет, формируется рабдом закрытого типа, в котором рабдомеры не контактируют между собой. При этом у них имеются также омматидии с обычными прямыми рабдомами, чувствительные и к поляризационному свету. У пчел такие фасетки располагаются по краю глаза (Wehner, Bernard, 1993). У некоторых бабочек искажения при восприятии цвета снимаются за счет значительного искривления микроворсинок рабдомеров (Kelber et al., 2001).

Наиболее интенсивно на Землю падают лучи в диапазоне 300—900 нм с пиком около 500 нм. Это, по-видимому, и определило ширину спектра восприятия у многих животных, в цчастности, у человека (400—800 нм). У других животных могут происходить смещение или расширение как воспринимаемого спектра в целом, так и излучения определенных длин волн (цветовое зрение). Внизу – спектры чувствительности фоторецепторов разных организмов

У многих других насекомых, особенно у чешуекрылых, во всех омматидиях сохраняются обычные прямые рабдомы, поэтому их фоторецепторы способны одновременно воспринимать и «цветной», и поляризованный свет. При этом каждый из этих рецепторов чувствителен лишь к определенному поляризационному углу преференции и определенной длине световой волны. Такое сложное зрительное восприятие помогает бабочкам при питании и откладке яиц (Kelber et al., 2001).

Незнакомая Земля

Можно бесконечно углубляться в особенности морфологии и биохимии глаза насекомых и все равно затруднится в ответе на такой простой и одновременно невероятно сложный вопрос: как видят насекомые?

Человеку трудно даже представить образы, возникающие в головном мозге насекомых. Но все нужно заметить, что популярная сегодня мозаичная теория зрения, согласно которой насекомое видит изображение в виде своеобразного пазла из шестигранников, не совсем точно отражает суть проблемы. Дело в том, что хотя каждая единичная фасетка фиксирует отдельный образ, являющийся лишь частью цельной картины, эти изображения могут перекрываться с изображениями, полученными с соседних фасеток. Поэтому изображение мира, полученное с помощью огромного глаза стрекозы, состоящего из тысяч миниатюрных камер-фасеток, и «скромного» шестифасеточного глаза муравья, будет сильно различаться.

Насекомые обладают поляризационным зрением благодаря особой структуре своих фоторецепторов. В отличие от человека, у насекомых фоточувствительные мембраны, содержащие зрительный пигмент родопсин, свернуты в трубочки. Благодаря этому они способны воспринимать свет определенной степени поляризации. В случае, если зрительные клетки в рабдоме будут свернуты или скручены, глаз потеряет способность воспринимать поляризованный свет. Рис. Н. Крюковой

Что касается остроты зрения (разрешающей способности, т. е. способности различать степень расчлененности объектов), то у насекомых она определяется количеством фасеток, приходящихся на единицу выпуклой поверхности глаза, т. е. их угловой плотностью. В отличие от человека, глаза насекомых не обладают аккомодацией: радиус кривизны светопроводящей линзы у них не меняется. В этом смысле насекомых можно назвать близорукими: они видят тем больше деталей, чем ближе к объекту наблюдения находятся.

При этом насекомые с фасеточными глазами способны различать очень быстро движущиеся объекты, что объясняется высокой контрастностью и малой инерционностью их зрительной системы. К примеру, человек может различать лишь около двадцати вспышек в секунду, а пчела – в десять раз больше! Такое свойство жизненно важно для быстролетающих насекомых, которым нужно принимать решения непосредственно в полете.

Цветовые образы, воспринимаемые насекомыми, также могут быть гораздо сложнее и необычнее, чем у нас. К примеру, цветок, кажущийся нам белым, часто скрывает в своих лепестках множество пигментов, способных отражать ультрафиолетовый свет. И в глазах насекомых-опылителей он сверкает множеством красочных оттенков – указателей на пути к нектару.

Пчелы способны почти также хорошо различать поляризацию света, как его длину волны (цвет) и яркость. На фото – пчела медоносная (Apis mellifera) на люпине. На задних лапках видна обножка, комочек собранной насекомым цветочной пыльцы

Считается, что насекомые «не видят» красный цвет, который в «чистом виде» и встречается в прирорде чрезвычайно редко (исключение – тропические растения, опыляемые колибри). Однако цветы, окрашенные в красный цвет, часто содержат и другие пигменты, способные отражать коротковолновые излучения. А если учесть, что многие из насекомых способны воспринимать не три основных цвета, как человек, а больше (иногда до пяти!), то их зрительные образы должны представлять собой просто феерию красок.

И, наконец, «шестое чувство» насекомых – поляризационное зрение. С его помощью насекомым удается увидеть в окружающем мире то, о чем человек может получить лишь слабое представление с помощью специальных оптических фильтров. Насекомые же таким способом могут безошибочно определять местонахождение солнца на облачном небе и использовать поляризованный свет в качестве «небесного компаса». А водные насекомые в полете обнаруживают водоемы по частично поляризованному свету, отраженному от зеркала воды (Schwind, 1991). Но вот какие при этом они «видят» образы, человеку просто невозможно себе представить…

У всех, кто по той или иной причине интересуется зрением насекомых, может возникнуть вопрос: почему у них не сформировался камерный глаз, подобный человеческому глазу, со зрачком, хрусталиком и прочими приспособлениями?

На этот вопрос в свое время исчерпывающе ответил выдающийся американский физик-теоретик, Нобелевский лауреат Р. Фейнман: «Этому мешает несколько довольно интересных причин. Прежде всего, пчела слишком мала: если бы она имела глаз, похожий на наш, но соответственно уменьшенный, то размер зрачка оказался бы порядка 30 мкм, а поэтому дифракция была бы столь велика, что пчела все равно не могла бы видеть лучше. Слишком маленький глаз — это не очень хорошо. Если же такой глаз сделать достаточного размера, то он должен быть не меньше головы самой пчелы. Ценность сложного глаза в том и состоит, что он практически не занимает места – просто тоненький слой на поверхности головы. Так что, прежде чем давать советы пчеле, не забывайте, что у нее есть свои собственные проблемы!»

Поэтому неудивительно, что насекомые выбрали свой путь в зрительном познании мира. Да и нам, чтобы видеть его с точки зрения насекомых, пришлось бы, для сохранения привычной остроты зрения, обзавестись громадными фасеточными глазами. Вряд ли такое приобретение оказалось бы нам полезным с точки зрения эволюции. Каждому – свое!

Литература

Тыщенко В. П. Физиологияя насекомых. М.: Высшая школа, 1986, 304 С.

Klowden M. J. Physiological Systems in Insects. Academ Press, 2007. 688 p.

Nation J. L. Insect Physiology and Biochemistry. Second Edition: CRC Press, 2008.

В публикации использованы фото автора

# : 22 Июл 2013 , «Но чтоб сие здание [Академия] непременно и полезно было, то имеет оное само себя править» , том 50, №2

фасеточный глаз — определение — английский

Примеры предложений с «фасеточным глазом», память переводов

Europarl8 Идея «привлечь внимание» президента явно полностью субъективна, поскольку у президента есть глаз, но его нет. широкий и многогранный глаз, как у рептилии, а это означает, что те, кто ловит его взгляд, — это те, кто ловит его взгляд; секретарский персонал может очень помочь в этом. WikiMatrix Только род Tetropium, характеризующийся мелко фасеточными глазами, имеет дневную активность. ханглиш Леди Салмакия склонилась над раскалывающимся коконом синего электрик, разглаживая влажные, тонкие крылья, стараясь, чтобы ее лицо было первым, что отпечаталось в многогранных глазах, успокаивая тонко натянутые нервы. , нашептывая свое имя блестящему существу, обучая его тому, кто это был. WikiMatrix В отличие от большинства других многоножек, домашние многоножки и их близкие родственники имеют хорошо развитые фасеточные глаза. OpenSubtitles2018.v3 Из-за своих многогранных глаз они не могут обнаружить зебр. Hunglish — Луковичный орган запаха между фасеточными глазами Коду задергался. hunglish На него смотрели два выпуклых фасеточных глаза из колючих зеленых шариков плоти. Обычное ползание Офтальмологи обладают опытом во всех аспектах ухода за глазами, от назначения очков или контактных линз до выполнения сложной хирургии глаза. Обычное ползание (ЛОР: «В зеркале, мрачно, часть II»). У некоторых горнов глаза серебристые и фасеточные, очень похожие на сложные глаза насекомых, в то время как у других типичные гуманоидные глаза со зрачками. Europarl8 Каждый в Европе сегодня, кто хочет гарантировать, что старые раны не будут вновь открыты, любой, кто хочет гарантировать, что ни одно будущее поколение никогда не должно страдать от того, что перенесли предыдущие поколения, должен стоять за общее будущее, будь готов смотреть правду, которая имеет много граней в глазах и протягивает руку интеграции и сотрудничества. WikiMatrix Другие пары, называемые вторичными глазами, считаются производными от сложных глаз предковых хелицератов, но больше не имеют отдельных фасеток, типичных для сложных глаз.Объектив, устройство и система, а также способ и изделие, могут работать для приема множества лучей левого глаза через первое множество разделяющих граней линзы в плоскости получения изображения и принимать множество лучей для правого глаза через второе множество разделяющих граней линзы в плоскости получения изображения. springer На примере Calliphora erythrocephala, Musca и Drosophila было показано, что узор фасеток сложного глаза можно описать как геометрическое пересечение двух систем концентрических дуг окружности: один центр расположен дорсально, а другой — вентрально. QED Каждая из этих маленьких граней представляет собой один глаз, и вся совокупность вместе интерпретируется мозгом как одно большое изображение. спрингер Из этих двух систем изображение фасеток сложного глаза можно наклонить в прямоугольных координатах. Изображение дает количественно точное описание сложного глаза. Он показывает специфические характеристики симметрии глаза и обеспечивает неизменный паттерн для расположения 1. рабдомеров внутри омматидий, 2.псевдозрачок и 3. проекция сетчатки и пластинки. WikiMatrixПоскольку апертура глазка больше фасет сложного глаза, такое расположение позволяет видеть при слабом освещении. WikiMatrix У креветки глаз типа преломляющей суперпозиции, сзади за ним в каждом глазу есть одна большая грань, которая в три раза больше диаметра других глаз, а за ней — увеличенный кристаллический конус. Giga-frenВ Канадском музее цивилизации корпорации мы считаем, что наша роль заключается в том, чтобы взглянуть на все аспекты истории человечества. WikiMatrix — Он использует фасетное наблюдение (отсюда и ориентир «глаза мухи») для создания пиксельных изображений на высокой скорости. WikiMatrix На переднем верхнем крае лобная часть имеет трапециевидную грань для контакта с префронтальной костью, которая не является частью верхнего края глазницы, и отделена от фасетки слезной кости тонким вертикальным гребнем.

Показаны страницы 1. Найдено 89 предложения с фразой faceted eye.Найдено за 7 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки.Они поступают из многих источников и не проверяются. Имейте в виду.

.

фасеточный глаз — это … Что такое фасеточный глаз?

  • Тринт — Тринтаны (единичный Тринт) в вымышленной Вселенной Ларри Нивена «Известный космос» были давно вымершими видами, которые правили галактикой посредством телепатического контроля над разумом. Люди знали их как работорговцев. Они дебютировали в фильме Нивена «Для инвалидов», опубликованном… Wikipedia

  • роговица — (+) [Баба, 2005]. Передняя часть панциря, включая глазные ножки, по Munidopsis. [Баба, 2005] Прозрачная роговая перепонка, образующая дистальное покрытие глаза [Ingle, 1980].Фасеточная часть глаза [Батлер, Т.Х.]. Граненый,…… Словарь ракообразных

  • Алмазная огранка — Эта статья посвящена стилям алмазной огранки. Для более широкого обсуждения декоративных алмазов см. Алмаз (драгоценный камень). Часть серии статей о алмазных материалах… Wikipedia

  • Алмаз — Эта статья о минерале. Для драгоценного камня см. Алмаз (драгоценный камень). Чтобы узнать о других значениях, включая форму ◊, см. Алмаз (значения)… Wikipedia

  • Gemstone — сюда перенаправляются драгоценности.Для использования в других целях, см Драгоценности (значения). Драгоценный камень перенаправляется сюда. Для персонажа Джеймса Бонда см. Ураган Золото. Для использования в других целях, см Драгоценный камень (значения). Подборка камешков из драгоценных камней, сделанных путем кувырка…… Wikipedia

  • Гуджар Мал Моди — Рай Бахадур Гуджармал Моди считается одним из известных промышленников Индии, которые способствовали укреплению основ индийской автономии. У него была многогранная личность. Он был прирожденным администратором и горячо верил в… Wikipedia

  • Facet — Грани — это плоские грани геометрических фигур.Организация естественных граней была ключом к раннему развитию кристаллографии, поскольку они отражают симметрию, лежащую в основе кристаллической структуры. У драгоценных камней обычно есть огранка…… Wikipedia

  • дизайн интерьера — 1. дизайн и согласование декоративных элементов интерьера дома, квартиры, офиса или другого структурного пространства, включая цветовые схемы, фурнитуру, предметы интерьера, а иногда и архитектурные особенности. 2. искусство, бизнес или…… Универсал

  • фоторецепция — фоторецептивная, прил./ фох то ри сеп шеун /, сущ. физиологическое восприятие света. [1905 10; ФОТО + ПРИЕМ] * * * Биологические реакции на раздражение светом, чаще всего относящиеся к механизму зрения. В одноклеточных организмах такие… Универсал

  • литература — / lit euhr euh cheuhr, choor, li treuh /, n. 1. сочинения, в которых выражение и форма в связи с идеями, представляющими постоянный и всеобщий интерес, являются характерными или существенными чертами, как поэзия, романы, история, биография и эссе.2.…… Универсал

  • Хризоберилл — Общая категория Оксидные минералы Группа шпинели Химическая формула Быть… Википедия

  • .

    фасеточный глаз — это … Что такое фасеточный глаз?

  • Тринт — Тринтаны (единичный Тринт) в вымышленной Вселенной Ларри Нивена «Известный космос» были давно вымершими видами, которые правили галактикой посредством телепатического контроля над разумом. Люди знали их как работорговцев. Они дебютировали в фильме Нивена «Для инвалидов», опубликованном… Wikipedia

  • роговица — (+) [Баба, 2005]. Передняя часть панциря, включая глазные ножки, по Munidopsis. [Баба, 2005] Прозрачная роговая перепонка, образующая дистальное покрытие глаза [Ingle, 1980].Фасеточная часть глаза [Батлер, Т.Х.]. Граненый,…… Словарь ракообразных

  • Алмазная огранка — Эта статья посвящена стилям алмазной огранки. Для более широкого обсуждения декоративных алмазов см. Алмаз (драгоценный камень). Часть серии статей о алмазных материалах… Wikipedia

  • Алмаз — Эта статья о минерале. Для драгоценного камня см. Алмаз (драгоценный камень). Чтобы узнать о других значениях, включая форму ◊, см. Алмаз (значения)… Wikipedia

  • Gemstone — сюда перенаправляются драгоценности.Для использования в других целях, см Драгоценности (значения). Драгоценный камень перенаправляется сюда. Для персонажа Джеймса Бонда см. Ураган Золото. Для использования в других целях, см Драгоценный камень (значения). Подборка камешков из драгоценных камней, сделанных путем кувырка…… Wikipedia

  • Гуджар Мал Моди — Рай Бахадур Гуджармал Моди считается одним из известных промышленников Индии, которые способствовали укреплению основ индийской автономии. У него была многогранная личность. Он был прирожденным администратором и горячо верил в… Wikipedia

  • Facet — Грани — это плоские грани геометрических фигур.Организация естественных граней была ключом к раннему развитию кристаллографии, поскольку они отражают симметрию, лежащую в основе кристаллической структуры. У драгоценных камней обычно есть огранка…… Wikipedia

  • дизайн интерьера — 1. дизайн и согласование декоративных элементов интерьера дома, квартиры, офиса или другого структурного пространства, включая цветовые схемы, фурнитуру, предметы интерьера, а иногда и архитектурные особенности. 2. искусство, бизнес или…… Универсал

  • фоторецепция — фоторецептивная, прил./ фох то ри сеп шеун /, сущ. физиологическое восприятие света. [1905 10; ФОТО + ПРИЕМ] * * * Биологические реакции на раздражение светом, чаще всего относящиеся к механизму зрения. В одноклеточных организмах такие… Универсал

  • литература — / lit euhr euh cheuhr, choor, li treuh /, n. 1. сочинения, в которых выражение и форма в связи с идеями, представляющими постоянный и всеобщий интерес, являются характерными или существенными чертами, как поэзия, романы, история, биография и эссе.2.…… Универсал

  • Хризоберилл — Общая категория Оксидные минералы Группа шпинели Химическая формула Быть… Википедия

  • .

    глаз фасеточный

  • роговица — (+) [Баба, 2005]. Передняя часть панциря, включая глазные ножки, по Munidopsis. [Баба, 2005] Прозрачная роговая перепонка, образующая дистальное покрытие глаза [Ingle, 1980]. Фасеточная часть глаза [Батлер, Т.Х.]. Граненый,…… Словарь ракообразных

  • Искусство Южной Азии — Литературное, исполнительское и изобразительное искусство Индии, Пакистана, Бангладеш и Шри-Ланки. Мифы о популярных богах, Вишну и Шиве, в Пуранах (древних сказках), а также в эпосах Махабхараты и Рамаяны служат материалом для репрезентативных и…… Universalium

  • Божества мифов Ктулху — Писатель Х.На протяжении своей литературной карьеры П. Лавкрафт создал ряд вымышленных существ, включая Великих Древних и Внешних богов. Старшие боги — это более позднее творение писателя, такого как Август Дерлет, которому приписывают…… Википедию

  • перепончатокрылых — / huy meuh nop teuhr euhn /, прил. 1. перепончатокрылые. п. 2. Также гименоптер. перепончатокровное насекомое. [1875 80; HYMENOPTER + AN] * * * ▪ насекомое Введение любой член третьего по величине и, возможно, самого полезного для человека из всех насекомых…… Universalium

  • Западная скульптура — ▪ Искусство Введение трехмерные художественные формы, созданные на территории современной Европы, а затем и в неевропейских регионах, где преобладала европейская культура (например, Северная Америка) от эпохи металла (Европа, история) до наших дней.Вроде…… Универсалиум

  • Эрнест Мейсонье — Эрнест Мейсонье † Католическая энциклопедия ► Эрнест Мейсонье Французский художник, р. в Лионе 21 февраля 1815 г .; д. в Париже, 31 января 1891 года. Если лионский гений живописи можно найти в таких художниках, как Шенавар, Фландрин, Пюви де…… Католическая энциклопедия

  • Кабошон — Кабошон или кабашон — это драгоценный камень, которому придана форма и отполирована, а не огранена.Получающаяся форма обычно представляет собой выпуклый верх с плоским низом. Огранка кабошоном обычно применяется к непрозрачным драгоценным камням, тогда как огранка обычно…… Wikipedia

  • слесарь — слесарь, н. / met l werrk /, n. предметы из металла. [1840 50; МЕТАЛЛ + РАБОТА] * * * Полезные и декоративные предметы из различных металлов. Самая старая техника — молотковая. После 2500 г. до н.э. применялось также литье, расплавленный металл…… Универсал

  • Часы — Для использования в других целях, см Часы (значения).Ранние наручные часы Waltham, которые носили солдаты во время Первой мировой войны (Deutsches Uhrenmuseum, инв. 47 3352) Часы — это небольшие часы, которые обычно носят либо на запястье, либо прикрепляют к цепочке и переносят в… Wikipedia

  • фасет — / fas it /, n., V., Граненый, граненый или (особенно брит.) Граненый, фасетный. п. 1. одна из маленьких полированных плоских поверхностей ограненного камня. 2. аналогичная поверхность, вырезанная на обломке скалы под действием воды, песка, принесенного ветром и т. Д. 3. вид; фаза:…… Универсал

  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *